
Article

Stereotypic Immune System Development in

Newborn Children
Graphical Abstract
267 plasma proteins
(ProSeek)100µl blood

Preterm (< 30 wks), n=50
Term (> 37 wks) , n=50

12wks

Mothers, n=58
Fathers, n=52

CB 1wk 4wks

CD19
CD3

CD3
CD4

CD45
CD3

CD14
CD20

Immune cells
(Mass cytometry)

CD4 Immune system 
adaptation

Postnatal environment
Highlights
d Cord blood is not representative of postnatal immunity

d Preterm and term children differ at birth but rapidly converge

thereafter

d Immune system development follows a stereotypic pattern

early in life

d Dynamic parameters imply microbial interactions during

early immune development
Olin et al., 2018, Cell 174, 1277–1292
August 23, 2018 ª 2018 The Author(s). Published by Elsevier Inc.
https://doi.org/10.1016/j.cell.2018.06.045
Authors

Axel Olin, Ewa Henckel, Yang Chen, ...,

Cheng Zhang, Kajsa Bohlin, Petter Brodin

Correspondence
petter.brodin@ki.se

In Brief

Longitudinal profiling of blood immune

cells from 100 newborns provides a

systemic view on the ontogeny of the

human neonatal immune system.

mailto:petter.brodin@ki.se
https://doi.org/10.1016/j.cell.2018.06.045
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cell.2018.06.045&domain=pdf


Article
Stereotypic Immune System
Development in Newborn Children
Axel Olin,1,5 Ewa Henckel,2,3,5 Yang Chen,1 Tadepally Lakshmikanth,1 Christian Pou,1 Jaromir Mikes,1

Anna Gustafsson,2,3 Anna Karin Bernhardsson,1,3 Cheng Zhang,4 Kajsa Bohlin,2,3 and Petter Brodin1,3,6,*
1Science for Life Laboratory, Department of Women’s and Children’s Health, Karolinska Institutet, 17121 Solna, Sweden
2Department of Clinical Science, Intervention and Technology, Karolinska Institutet, 14152 Solna, Sweden
3Department of Neonatology, Karolinska University Hospital, 17176 Solna, Sweden
4Science for Life Laboratory, School of Biotechnology, KTH, Royal Institute of Technology, 17121 Stockholm, Sweden
5These authors contributed equally
6Lead Contact
*Correspondence: petter.brodin@ki.se

https://doi.org/10.1016/j.cell.2018.06.045
SUMMARY

Epidemiological data suggest that early life expo-
sures are key determinants of immune-mediated dis-
ease later in life. Young children are also particularly
susceptible to infections, warranting more analyses
of immune system development early in life. Such an-
alysesmostly have been performed inmousemodels
or human cord blood samples, but these cannot
account for the complex environmental exposures
influencing human newborns after birth. Here, we
performed longitudinal analyses in 100 newborn chil-
dren, sampled up to 4 timesduring their first 3months
of life. From 100 mL of blood, we analyze the devel-
opment of 58 immune cell populations by mass cy-
tometry and 267 plasma proteins by immunoassays,
uncovering drastic changes not predictable from
cord blood measurements but following a stereo-
typic pattern. Preterm and term children differ at birth
but converge onto a shared trajectory, seemingly
driven by microbial interactions and hampered by
early gut bacterial dysbiosis.

INTRODUCTION

The human immune system is a sensory system for intrinsic and

extrinsic environmental factors. Much like other sensory sys-

tems, the immune system is dependent on sensory inputs during

its development, and germ-free mice have severe immune sys-

tem defects (Gensollen et al., 2016). Also, in humans, early-life

exposures sensed by the immune system influence the risk

of developing immune-mediated diseases, such as allergies,

asthma (Laforest-Lapointe and Arrieta, 2017), and type 1 dia-

betes (Vatanen et al., 2016), later in life. Specifically, interactions

between the developing immune system and the microbes colo-

nizing the intestine, skin, and airways of a newborn child have

been suggested as important. The first 100 days of life seems

to be a critical period because microbial dysbiosis during this

period was associated with the development of asthma in a hu-
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man birth cohort (Arrieta et al., 2015), a finding that is in line with

the hygiene hypothesis (Strachan, 1989). Newborn children are

also susceptible to infections, especially when born preterm,

but the basis for this is not fully understood (Kollmann et al.,

2017). Clearly further investigation on immune system develop-

ment in human children is warranted for us to better protect

newborn children from infections, develop more efficient vac-

cines, and reduce the burden of immune-mediated diseases

occurring later in life (Laforest-Lapointe and Arrieta, 2017). Lon-

gitudinal analyses of immune system development in human

newborns have been hampered by (1) a difficulty in obtaining

blood samples from healthy children and (2) technical limitations

in extracting sufficient amounts of information from the small

blood volumes obtainable.

Systems immunology analyses allow for many simultaneous

measurements to be made in a given sample, allowing the vari-

ation between individuals to be taken into account and used in

order to make new discoveries directly in human cohorts (Davis

and Brodin, 2018; Tsang, 2015). By such systems-level ana-

lyses, coordinated changes between cells and proteins also

can be appreciated and regulatory principles inferred (Kaczor-

owski et al., 2017; Brodin and Davis, 2017). Human systems

immunology analyses have now revealed not only large interindi-

vidual variation in immune cells and in protein composition

(Gaucher et al., 2008; Nakaya et al., 2015; Querec et al., 2009;

Sobolev et al., 2016) but also a stability of phenotypes within in-

dividuals over the course of weeks to months (Carr et al., 2016;

Tsang et al., 2014), and even a few years (Shen-Orr et al.,

2016). Most of the overall interindividual variation found among

healthy individuals is attributable to environmental factors (Bro-

din et al., 2015), but at which point such exposures shape our im-

mune systems is not well understood.

Here, we report on a longitudinal, systems-level analysis of im-

mune system development in 100 human newborns, followed

with up to four blood samples during the first 3 months of life.

Using as little as 100 mL of blood as starting material, we analyze

the development of all major immune cell populations by mass

cytometry and 267 plasma proteins by immunoassays, providing

a systems-level overview of immune system adaptation to post-

natal life (Figure 1A). These data reveal drastic changes across

immune components after birth, following a stereotypic pattern
ust 23, 2018 ª 2018 The Author(s). Published by Elsevier Inc. 1277
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shared by all children, but not predictable from cord blood mea-

surements. The cell and protein changes occurring imply inter-

actions with microbes as important, and, in a subset of children

with gut bacterial dysbiosis, stereotypic immune system devel-

opment is hampered.

RESULTS

Systems-Level Immune Analyses in Newborn Children
We first established a sample processing protocol that was easy

to use directly in delivery and neonatology departments without

the presence of dedicated research staff. This procedure in-

volves an immediate stabilization and freezing of whole blood

samples to minimize cell loss and sample decay. To allow

studies in very preterm and term children alike, we had to opti-

mize our protocols to work with as little as 100 mL of blood as

starting material (STAR Methods). We designed a mass cytome-

try panel with 38 antibodies targeting activation and differentia-

tion markers across all white blood cell populations and profiled

a total of 95,278,466 immune cells from 337 blood samples in to-

tal. Plasma protein analyses using ProSeek (Olink, Uppsala,

Sweden), a sensitive dual-recognition immunoassay (Assarsson

et al., 2014; Lundberg et al., 2011), allowed the quantification of

267 unique proteins in < 20 mL of plasma in (Figure 1A). In a sub-

set of children, we also performed transcriptome analyses at

weeks 1 and 12 in order to interrogate gene expression changes

occurring after birth.

We enrolled 100 newborn children, born at the Karolinska Uni-

versity Hospital between April 2014 and July 2017, and collected

up to four longitudinal blood samples at birth (cord blood) and

weeks 1, 4, and 12 of life. A few children were also sampled later

around 6 months of life (Figure 1A). We sampled the blood of

mothers and fathers for comparison, and the cohort included

children delivered very preterm (<30 weeks of gestation; n = 50)

or term (R37 weeks of gestation; n = 50), but excluded children

with known organ malformations or congenital disorders (STAR

Methods). The early-life environmental conditions were vastly

different between the groups, with preterm children experiencing

long initial hospital stays (median = 65 days), frequent antibiotic

exposures, and an increased rate of infections and inflammatory

complications. Term children were all healthy at birth and left the

hospital after a few days without receiving antibiotics.

Preterm Birth Is Associated with a Strong Inflammatory
Response
Preterm delivery is often triggered by an inflammatory process

related to premature cervical ripening, premature rupture
Figure 1. Preterm and Term Children Differ at Birth

(A) Blood samples of 100 newborn children and their parents were collected at

concentrations were measured by ProSeek, and immune cells were analyzed by

(B) Median protein concentrations in cord blood of term and preterm children. Diff

(C) Intersample differences between cord blood samples from preterm and term

(D) Gestational age at birth for preterm and term children and preterm children a

(E and F) Interindividual distances between term and preterm children at birth (gr

Interindividual distances separately calculated for plasma proteins (E) (Euclidian

±1.5 IGR above and below Q1 and Q3, respectively.

See also Figure S1 and Tables S2, S3, and S4.
of membranes and infections such as chorioamnionitis. To

compare immune system states in preterm and term children

at birth, we analyzed plasma protein concentrations in cord

blood samples. A strong pro-inflammatory signature character-

ized cord blood immune systems of children delivered very pre-

term, with high expression of chemokines CXCL11, and the prin-

cipal effector chemokine of newborn T cells, interleukin-8 (IL-8)

(CXCL8) (Gibbons et al., 2014) (Figure 1B). Term children had

high levels of the adipokine leptin, reflecting their higher fat de-

pots accumulated during the final trimester (Figure 1B). When

taking all 267 plasma proteins into account, preterm and term

delivered children segregated completely (Figure S1A). When

analyzing relative proportions of 21 canonical immune cell pop-

ulations (STARMethods), we found that cell compositions signif-

icantly differed between preterm and term children (Figure 1C), a

difference mostly attributed to a lower neutrophil proportion in

preterm correlating with gestational age (Figure S1B). The pre-

term and term children differed �3 months in gestational age

at birth (Figure 1D), and we reasoned that some of the differ-

ences seen could be attributed to this difference in maturity. If

so, it’s predicted that phenotypic distances between preterm

and term children would decrease as preterm children mature

to a gestational age comparable to term children at birth (Fig-

ure 1D). We calculated interindividual distances between cell

and protein profiles of term children at birth and preterm-deliv-

ered children, either at birth or at 3 months of postnatal age,

but instead of converging, immune profiles of 3-month-old pre-

terms were even more dissimilar to those of term delivered chil-

dren at birth (Figures 1E and 1F). These findings suggest that

maturation alone cannot explain differences between preterm

and term children at birth. Instead, these differences are likely

multifactorial and associated with perinatal conditions causing

the preterm delivery to occur. Divergence after birth also implies

significant adaptive changes occurring in response to postnatal

environmental exposures.

Cord Blood Measurements Are Not Predictive of
Postnatal Immunity
Most existing data on immune systems in newborn children stem

from cord blood measurements, and we decided to investigate

how well such measurements would predict postnatal immune

system states. We calculated correlation coefficients between

cord blood and week 1 (median, day 3) measurements and

found that the frequency measurements of only 6 of 21 immune

cell correlated strongly compared with a nonsense correlation

between randomly chosen samples from different children

(Figure 2A).
up to four different time points during the first months of life. Plasma protein

mass cytometry.

erently regulated proteins (false discovery rate [FDR] < 0.01) are marked in blue.

children were visualized by multidimensional scaling (MDS).

t 3 months postnatal age.

ay) or term children at birth and preterm children at 3 months after birth (blue).

distance) and cell composition (F) (Aitchison’s distance). Error bars represent
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This lack of predictabilitywasnot onlydue to inherent tissue dif-

ferences between cord blood and peripheral blood. In seven chil-

dren with available peripheral blood samples on the day of birth

(day 0), the immune cell compositions differed from week 1 sam-

ples (Figure 2B). In two children we obtained cord blood samples

(day0peripheralbloodsamplesandweek1samples),whichwere

all different, implying that both tissue differences between cord

and peripheral blood and continuous changes occurring after

birth explain the inability of predicting postnatal immune systems

from cord blood measurements (Figure 2B). Of 81 plasma pro-

teins with well-known immune function (STAR Methods), only

one protein, TNFRSF13B, could be predicted from cord blood in

the first week of life (Figure 2C). This lack of correlation between

cord blood and postnatal samples was not caused by technical

variability in the experimental assays used, as correlations be-

tween longitudinal samples from healthy adults (n = 100) strongly

correlated between time points (Figures S2A and S2B).

Apart from estimating immune cell composition, mass cytom-

etry analyses also allow for studies of phenotypic changes within

each cell population. We used Barnes-Hut SNE (bhSNE) (van der

Maaten, 2013; Shekhar and Brodin, 2013) to reduce the dimen-

sionality of single-cell data and visualize two-dimensional em-

beddings of cells at consecutive time points (STAR Methods).

We first sampled healthy adults at two consecutive weeks and

found stable phenotypes of all cell populations (Figure 2D). In

contrast, when comparing cord blood and week 1 samples

from newborn children, we found that immune cell phenotypes

were markedly different between time points (Figure 2E). To

quantify phenotypic differences, we calculated Jensen-Shannon

(JS) distances between cell distributions from consecutive time

points, embedded together using bhSNE. This confirmed the

stability of adult phenotypes (n = 3) between time points,

whereas newborn children (n = 45) had significantly higher

phenotypic distances between cord blood and week 1 (Stu-

dent’s t, p < 2.5 310�14) (Figure 2F). We conclude that drastic

changes in cell composition, plasma protein concentrations,

and, even, cell phenotypes that cannot be predicted from cord

blood measurements already occur during the first few days of

life. This finding highlights the need for more longitudinal ana-

lyses in young children in order to understand postnatal immune

development and immune system states early in life.

A Topological Parameter Landscape Reconstructs
Immune System Development
Systems-level analyses allow for coregulated cells and proteins

to be revealed, but this requires that such heterogeneous data
Figure 2. Cord Blood Is Not Representative of Postnatal Immunity

(A) Pearson’s correlation coefficients of immune cell frequencies in cord blood

samples (black), and significantly different features (orange). Error bars represen

(B) Intersample differences between cord blood samples, as well as peripheral bl

MDS. Sampling day is indicated. CB, cord blood. MDS coordinates are based o

(C) Pearson’s correlation coefficients of plasma protein concentrations in cord bl

samples (black) and significantly different features (orange). Error bars represent

(D) bhSNE embedding of indicated cells in blood samples from two consecutive

(E) bhSNE maps of immune cell phenotypes in cord blood and week 1 from a ne

(F) Pairwise Jensen-Shannon (JS) distances between bhSNE embeddings for all ti

samples (orange). p values for comparisons of the mean distances between gro

See also Figure S2.
are integrated. Topological data analysis (TDA) provides one

method for such integrated analyses and visualization of hetero-

geneous data types (Lum et al., 2013), such as cell frequencies,

protein concentrations, and clinical metadata (Lakshmikanth

et al., 2017). We applied TDA to visualize the systems-level

changes across all measured immune parameters early in life,

and to allow the exploration of these changes in relation to

metadata such as gestational age. From 202 blood samples

(parents excluded), we integrated 48 non-negative immune

cell population frequencies identified by an unsupervised clus-

tering algorithm (Weber and Robinson, 2016) (STAR Methods),

and 250 plasma proteins with variable concentrations (STAR

Methods). After scaling each measurement to unit variance,

we used Pearson correlation as a distance metric between

samples and neighborhood lenses to generate a kth

nearest neighbor (KNN) graph for visualization purposes

(STAR Methods) (Lum et al., 2013). This analysis yielded a

parameter landscape that reconstructs immune system devel-

opment in an unsupervised manner (Figure 3A). Nodes in this

network represent sets of correlated samples; each sample

can occur in multiple nodes, and edges connect nodes sharing

at least one sample. We colored nodes by average day of life,

and, in doing so, a time trajectory from left to right can be

seen (Figure 3A). Notably, cord blood samples formed a

discrete cluster, emphasizing the discrete nature of cord blood

and postnatal immune systems.

Convergence of Preterm and Term Immune Systems
after Birth
The overall distribution of samples in the parameter landscape

had a branched structure with two branches representing

different immune system states early in life, and these branches

mapped to preterm and term-delivered children when colored by

gestational age at birth (Figure 3B). The parameter landscape

summarizes features of early life immune system development.

What the model also suggests is that immune systems of pre-

term and term children evolve along one shared trajectory after

birth (Figure 3B) with 3-month samples intermixed in a dense re-

gion of the parameter landscape (Figure S3A). There were no sig-

nificant differences in developmental patterns between boys and

girls (Figures S3C and S3D) or by season (Figures S3E and S3F).

This stereotypic development shared by preterm and term chil-

drenwas surprising given that several preterm children remained

in the hospital for the entire study period and thus existed in

an environment very different from that of the families that had

returned home weeks to months earlier.
versus 1-week blood (gray), nonsense control correlation between random

t confidence intervals.

ood samples collected on the day of birth and the following days, visualized by

n pairwise Aitchison’s distances (cell composition).

ood versus 1-week blood (gray nonsense control correlation between random

confidence intervals.

weeks in an adult.

wborn.

me points from adult samples (gray) and for cord blood versus 1-week newborn

ups.
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The convergence of preterm and term immune systems was

mostly explained by changes in neutrophil frequencies and fre-

quencies of naive CD4+ T cells, which were already comparable

between the groups during the first few weeks of life, suggesting

a reversal of initially different phenotypes between preterm and

term children (Figure 3C). In a few preterm children, late onset

septicemia caused transient neutrophil expansion. Plasma pro-

tein changes also contributed to preterm/term convergence,

especially changes in leptin and IL-8, which converged during

the first month of life (Figure 3D).

To further investigate differences between preterm and term

immune systems after birth, we performed mRNA sequencing

(mRNA-seq) of viable peripheral blood mononuclear cells

(PBMCs) from four preterm and four term-delivered children at

weeks 1 and 12. Also, at the transcriptome level, large-scale

changes occurred between these time points in both preterm

and term children, and the groups were largely intermixed (Fig-

ure 3E). However, notable gene expression differences that per-

sisted at 12 weeks after birth and distinguish preterm children

from term children also could be seen. We analyzed gene

ontology (GO) terms associated with such differentially regulated

genes and found that preterm children overexpressed genes

involved in the negative regulation of interferon-gamma (IFNg)

production and T cell proliferation, as well as genes associated

with IL-10 secretion, highlighting multiple important pathways

that can potentially explain differences in infectious disease sus-

ceptibility between preterm and term children (Sharma et al.,

2012) (Figure 3F). Mode of delivery can affect the composition

of pioneer microbes colonizing newborns after birth (Domi-

nguez-Bello et al., 2010). We found that children born by vaginal

and cesarean delivery were also intermixed at 3 months of age.

A larger and a more balanced cohort of children will have to be

analyzed in order to investigate possible differences in immune

development associated with mode of delivery (Figure S3B).

Stereotypic Changes in Immune Cell Composition
after Birth
Newborn immune system parameters were dynamic over

time as illustrated by higher coefficients of variance (CVs) for

21 manually gated cell populations in newborn children as

compared to healthy adults sampled at the same intervals. All

cell populations were more variable in newborns than in adults,

and preterm and term children varied similarly over time (Fig-

ure 4A). For each cell population, we fit an ANOVAmodel and de-
Figure 3. Topological Data Analysis Reveals Systems-Level Converge

of Life

(A) A parameter landscape model by topological data analysis (TDA) using frequ

samples of newborn children (37 cord blood, 68 week-1, 38 week-4, and 59 week

each sample can be included in multiple nodes; and nodes sharing at least one sa

day of its samples.

(B) Nodes colored by the proportion of samples from term and preterm children.

(C and D) Differences in immune cell frequencies (C) and plasma protein conce

groups.

(E) Principal component analysis of mRNA-seq transcripts per kilobase million (TP

12 and two adult control samples.

(F) Differential expression analysis of RNA-seq data between preterm and term c

preterm versus term children.

See also Figure S3.
composed the total sums of squares into interindividual variation

(R2 explained by subject ID), and intraindividual variation (resid-

ual R2) (STAR Methods). In contrast to adults (Carr et al., 2016;

Shen-Orr et al., 2016; Tsang et al., 2014), newborn immune

cell populations exhibit a lot more intraindividual variation (Fig-

ures S4A and S4B) also emphasizing the dynamic nature of

newborn immune systems as compared to adults.

To compare the progressive changes in immune cell compo-

sition among all children, we analyzed relative abundances of

10 key immune cell populations in cord blood samples (n = 52)

and postnatal samples (n = 131) from all 100 children in our

cohort. Cord blood samples were heterogeneous without clearly

shared patterns. In contrast, postnatal samples ordered by day

of life revealed a stereotypic change in cell composition over

time (Figure 4B). This involved a gradual reduction in neutrophils

from birth, concomitant with an increase in CD4+ and CD8+ T cell

proportions (Figure 4B). Monocytes expanded transiently after

birth and subsequently contracted from 1 month, followed

by an increase in B cell abundance from 1 month onward

(Figure 4B).

Subpopulations of cells within major cell lineages display

similar stereotypic changes (Figures 4C and S4C–S4G). As an

example, B cell population #6 had a high expression of CD38,

CD24, and CD9, indicative of an immunoregulatory function,

and this population was abundant in cord blood but contracted

rapidly after birth (Figures 4D and 4F). Similarly, monocyte clus-

ter #8, with a phenotype reminiscent of myeloid-derived sup-

pressor cells (MDSCs) (Leiber et al., 2017; Rieber et al., 2013),

in newborns contracted to frequencies similar to those of parents

(Figure S4G). These examples suggest that such suppressive

immune cell populations that previously have been shown to

be abundant in cord blood might be less important inhibitors

of postnatal immune responses than previously suggested.

Collectively, these results show that immune cell compositional

changes after birth follow a stereotypic pattern of development

in all children, preterm and terms alike, despite their differences

in both maturity and postnatal environmental conditions.

Critical Period of Development Differing between
Immune Cell Populations
Cell frequencies and protein concentrations change in the

parameter landscape along a shared trajectory. When maternal

samples are included as an adult reference, the differences be-

tween newborn immune states and their mothers are seen at
nce of Term and Preterm Immune Systems during the First Weeks

encies of 48 cell populations and 250 plasma protein concentrations from 202

-12 samples). Each node in the network represents a set of correlated samples;

mple connected with an edge. The network is colored by the average sampling

ntrations (D) between preterm and term children separated into different age

M) values from preterm (n = 4) and term (n = 4) children sampled at weeks 1 and

hildren at 12 weeks. GO terms are listed for genes significantly upregulated in
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all time points, suggesting that additional exposures and adap-

tive changes are required to reach an adult-like immune state

(Figure 5A). Epidemiological evidence has suggested that the

first 3 months represents a critical period of immune develop-

ment during which environmental exposures can have long-

term consequences for immune-mediated diseases such as

allergies and asthma (Arrieta et al., 2015). We hypothesized

that such influences might perturb the phenotypic development

of individual cell populations, and we decided to compare im-

mune cell phenotypes in newborn children over time to parental

cell phenotypes. We reasoned that if newborn immune cell phe-

notypes would reach adult-like phenotypes during the first

3months of life, this would suggest a critical period in their devel-

opment during which environmental exposures could have long-

term consequences.

Cell phenotypes from different time points stained and ac-

quired together from a given child and its parents were visualized

together in a two-dimensional reduced space using bhSNE

(STAR Methods). In one example, samples 6 months apart

from one young child and corresponding parental samples re-

vealed notable patterns. First phenotypes of maternal and

paternal cells were very similar as compared to newborn cells.

Naive CD4+ and CD8+ T cell phenotypes in newborns showed

no sign of converging with parental phenotypes during the study

period, while naive B, natural killer (NK), and dendritic cells (DCs)

did (Figure 5B). We quantified these phenotypic distances

among all families and confirmed the development of adult-like

phenotypes for naive B, NK, and DCs, but not for T cell popula-

tions (Pearson’s correlation < �0.17, p < 0.05) (Figures 5C and

5D). Monocyte phenotypes were comparable between children

and parents already at birth (Figures 5C and 5D). We conclude

that phenotypic transitions toward parental-like phenotypes

follow a stereotypic sequence that differ between cell types

and that the first 3 months of life seems to be a critical period

during the development of B, NK, and DCs, implying that

environmental influences imprinting on these cells during the

first 3 months could have long-term consequences for the

individual’s immune system.

Immune Parameter Changes Imply Microbial
Interactions as Important During Development
Given the stereotypic changes in cell composition, protein con-

centrations, and cell phenotypes above, we wanted to investi-

gate the specific influences that could drive this development.

First, we subdivided the immune parameter landscape into five

discrete developmental stages (Figure 6A). We calculated inter-

individual distances between immune cell and protein profiles at

each of these stages showing a progressive convergence of

phenotypes, underscoring the stereotypic nature of the develop-
Figure 4. A Patterned Progression in Immune Cell Composition

(A) The coefficient of variance (CV) for 21 gated cell populations in healthy adults

(B) The relative proportions of 10 cell populations in 183 postnatal blood sample

(C) Composition of immune cell clusters analyzed using self-organizing map clus

(D) The B cell cluster #6 on a bhSNE analysis of total B cells and relative CD38,

(E) The relative frequency of cluster B #6 over time in children. Shaded area repr

(F) Frequency of cluster B #6 in parents.

See also Figure S4.
mental process (Figures 6B and 6C). To interpret individual

features changing at each stage of development, we compared

distributions of individual cell populations and proteins using

Kolmogorov-Smirnoff (KS) tests (Table S1). We find that regula-

tory cytokines IL-27 and IL-10 are abundant in cord blood and

decreased after birth (Figure 6D), much like the regulatory cell

populations described above. Around 1 month of life these reg-

ulatory cytokines increased again, possibly as a way to balance

induced immune responses to environmental factors (Figure 6D).

The Fc receptor, PIgR transports immunoglobulin A (IgA)

antibodies across epithelial cells onto luminal surfaces and is

induced by microbial products on these luminal surfaces (Kaet-

zel, 2005).We found increased PIgR expression specifically from

stage four and onward (Figure 6E). Further supporting the notion

that interactions with microbes are important were the elevated

levels of IL-8, IL-17A, and IL-12B during stages 4–5 (Figure 6F),

and multiple cell population changes. One notable example

was an expanded population of CD8+ T cells expressing the

CD161 receptor, likely representing a mucosal-associated

invariant T (MAIT) cell population (Figures 6G and 6H), known

to be involved in responses to bacteria on mucosal surfaces

(Wong et al., 2017).

Transcriptome analyses on weeks 1 and 12 reveal massive

changes across a wide range of pathways (Figures 6I and S5).

Many of the changes involve metabolic pathways, but some

important immune system processes were also found, and

most upregulated genes were major histocompatibility complex

(MHC) class II genes (HLA-DRA and -DQB1) induced by IFNg

upon microbial stimulation (Mach et al., 1996). Collectively,

these findings suggest that responses to microbes, especially

at mucosal surfaces, are possible drivers of the stereotypic

immune systems development in newborn children during the

first few weeks of life.

Early Dysbiosis in the Gut Microbiome Affects Immune
System Development
To better understand microbe-immune interactions in newborn

children, we performed 16S rRNA profiling of fecal samples

(n = 95) from 45 of the children in our cohort at weeks 1, 4, and

12 of life. Principal coordinates analysis using UniFrac distances

revealed a progressive change in fecal microbiome composition

over time (Figure 7A) (La Rosa et al., 2014). The diversity of these

fecal microbiomes increased over time after birth, but in a few

children the diversity during the first 50 days was exceptionally

low indicating bacterial dysbiosis (Figure 7B). In these children,

near-complete dominance of the gut microbiome by bacterial

classes Bacilli or Gammaproteobacteria was seen (Figure 7C).

The children with early gut dysbiosis had more circulating endo-

thelial cells, activated T cell populations and higher levels of the
(n = 3), preterm (n = 29), and term (n = 15) children.

s from 57 children ordered by sampling day of life.

tering of the B cell population.

CD9, and CD24 expression.

esents the confidence interval around the mean.
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A

B

C D

Figure 5. Phenotypic Development of Immune Cell Populations

(A) TDA network landscape with maternal and newborn samples combined.

(B) bhSNE-maps of five cell populations from one child (orange) and its parents (gray).

(C) JS distances between phenotypes in each child and its parents separately calculated and plotted against gestational age (days) at the time of sampling. Linear

regression curves with confidence intervals are shown, and R2 values and p values for each correlation.

(D) Boxplots of the JS distances for cell phenotypes between coparents. Error bars represent ±1.5 IGR above and below Q1 and Q3, respectively.
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Figure 6. Immune Parameter Changes during the First Weeks of Life

(A) The TDA parameter landscape subdivided into five developmental stages.

(B and C) Interindividual distances for plasma protein profiles (B) (Euclidean) and cell composition (C) (Atchinson’s) across the five stages.

(D) Plasma concentration (log2 NPX) of cytokines IL-27 and IL-10.

(E) Plasma concentration (log2 NPX) of PIgR.

(F) Plasma concentration (log2 NPX) of IL-8 (CXCL8) and cytokines IL-17A and IL-12B.

(G) The frequency of CD8+ T cell cluster #1 as a fraction of all cells.

(H) bhSNE plots showing cluster localization among CD8+ T cells and CD3, CD8a, CD161, and CD38 expression. All p values from KS tests comparing

distributions of stages 2–3 combined versus stage 5.

(I) Differentially regulated genes week 12 versus week 1 associated with the GO: positive reg. of immune system process. Genes ordered by absolute log2
(week 12/week 1) (x axis) and actual log2 (week 12/week 1) (y axis).

See also Figure S5 and Table S1.
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pancreatic exopeptidase CPA1 in their subsequent 3-month

blood samples (Figures 7D–7F). When analyzing interindividual

distances at 3months of life, we found that children experiencing

early gut dysbiosis were more heterogeneous, a finding that

again suggests that the stereotypic developmental trajectory is

perturbed in children experiencing early dysbiosis (Figure 7G).

We conclude from these findings that interactions with microbes

colonizing newborn children during the first weeks of life are

seemingly important, and perturbation to this process of coloni-

zation is associated with perturbations to the stereotypic im-

mune system developmental early in life.

DISCUSSION

The finding that children of different levels of maturity and post-

natal environmental conditions converge on a shared develop-

mental trajectory early in life was unexpected to us. One possible

explanation is that antigenic exposures shared by all children

drive this development. At the same time, gut microbiome

composition differed between children, and the likelihood of

shared exposures across such a diverse group of children seems

unlikely. Another possible explanation is that some other physi-

ological process, shared by all children, triggers the stereotypic

immune system development, but the changes seen implicate

interactions with microbes. These findings led us to hypothesize

a possible model for stereotypic adaptive changes to diverse

environmental exposures.

This model is based on the assumption that a single input

sensed by the immune system will elicit a stereotypic adaptive

response by the immune system (Figure 7H). In contrast, two

simultaneous inputs, with partially opposing effects, will each

induce adaptation, but also constrain the adaptive responses

to the other simultaneous input (Figure 7I). If the number of simul-

taneous and diverse inputs is sufficiently large, the number of

possible phenotypes decreases, and convergence of initially

diverse immune systems is predictable (Figure 7J). This model

does not require inputs to be identical, as long as the number

of simultaneous inputs is sufficiently large and give rise to

different adaptive responses. We propose this model of immune

system adaptation to environmental influences to explain

the developmental changes, shared by diverse children and

following a stereotypic pattern during the first weeks of life.

Collectively, these findings highlight the reactive nature of the

human immune system with implications, not only for our under-
Figure 7. Immune System Development and Gut Bacterial compositio

(A) Principle coordinate analysis of bacterial composition in fecal samples (n = 9

(B) Shannon a diversity in each sample and age at sampling. Individuals are divide

a < 0.3).

(C) Bacterial class abundances in week 1 samples with normal and dysbiotic gu

(D) Bacterial class composition across fecal samples grouped by week of life and

around the mean.

(E) Cell frequencies as log2(dysbiosis/normal) at 12 weeks, ranked by log2ratio. T

(F) Plasma protein concentrations as log2ratio (dysbiosis/normal) at 12 weeks, ra

(G) Pairwise interindividual Aitchison’s distances between immune cell compositi

Error bars represent ±1.5 IGR above and below Q1 and Q3, respectively.

(H) One hypothetical adaptive change within state space induced by a single inp

(I) Adaptation to the same stimuli is constrained when partially opposed by a sec

(J) Convergence of diverse immune systems in state space by a large number o
standing of newborn immune systems, but also for our under-

standing of human immune system variation in general and

how this is shaped by environmental influences. We also pro-

pose that in-depth analyses during early life adaptation to envi-

ronmental influences provides a unique opportunity for better

understanding the molecular mechanisms of immune system

adaptation to environmental influences in humans.

Recent systems-level analyses in humans have shown that

environmental influences explain most of the overall variation

among healthy individuals (Brodin et al., 2015; Orrù et al.,

2013; Patin et al., 2018; Roederer et al., 2015) and that such envi-

ronmental influences from infections, vaccines, nutrition, and the

microbiome exert a cumulative influence over the course of life

(Brodin et al., 2015; Kaczorowski et al., 2017). This is also re-

flected in an increased similarity of individuals sharing household

(Carr et al., 2016). The increased divergence of human immune

systems with age predicts that cord blood samples would

more homogeneous with respect to their immune phenotypes

than postnatal samples given the more limited exposure before

birth. Here, we show that cord blood phenotypes are, in fact,

highly diverse and, instead of diverging after birth, converge

onto a shared developmental path during the first weeks of life.

This converged 3-month immune system state might therefor

represent the real set point from which human immune system

variation is shaped by environmental exposures over the course

of life.

We also describe evidence of a critical period in the develop-

ment of B, NK, and DCs during the first 3 months of life, as these

cell populations reach adult-like phenotypes during this period,

suggesting that environmental influences imprinting on these

cells during this time window could have long-term conse-

quences. Such long-term consequences of early life exposures

are suggested to be important determinants of future risk of im-

mune-mediated diseases in recent epidemiological analyses

(Arrieta et al., 2015). In line with this, colonization with Helico-

bacter pylori has been shown to be protective of asthma and

other inflammatory conditions, as its presence influences DC

maturation toward a more tolerogenic state (Oertli and Müller,

2012). If microbial stimuli present during the first 100 days

have similar effects on DC development, this might establish

an individual’s DCs on a trajectory associated with reduced dis-

ease risk. T cell populations showed no signs of convergence

with parental cells during the first 100 days in our study, and

longer follow-up times will be needed to understand whether
n

5) collected at 1, 4, and 12 weeks of age in newborn children (n = 45).

d into normal (purple, Shannon a > 0.3) and dysbiotic cases (orange, Shannon

t microbiome.

ordered within groups by PCoA2. Shaded area represents confidence interval

op four highlighted and named.

nked by log2ratio. Top five highlighted and named.

ons at 12 weeks within the dysbiosis group (orange) and normal group (purple).

ut.

ond simultaneous input.

f simultaneous inputs inducing opposing adaptive responses.

Cell 174, 1277–1292, August 23, 2018 1289



and when such periods might occur for T cell populations. This

also suggests that specific cell populations and pathways have

different critical periods of calibration when they would be

most amenable to environmental imprinting, allowing specific

exposures at specific time points in the context of a given ge-

netic makeup to contribute to an individual’s risk of individual im-

mune-mediated diseases.

The finding that all children in our cohort converged similarly

might seem at odds with known interindividual differences in dis-

ease susceptibility. In this respect, it is important to consider that

infectious disease susceptibility is a complex trait, influenced by

immunological, epidemiological, and physiological factors.

Moreover, even if the convergence of phenotypes illustrates an

adaptation of the immune system, this does not necessarily

translate into identical functional responses. Further studies

will be required to investigate functional differences during the

different stages of the stereotypic development and the regula-

tory, possibly epigenetic, adaptations underlying this process.

The ability to adapt to environmental influences was shared by

the children in our cohort, and we argue that this represents an

extreme example of a process that is ongoing all the time, in all

individuals, as our immune systems interact with internal and

external environments and adapt to them. Although all 100 chil-

dren behaved similarly here, it is possible that a larger cohort

would identify individuals who do not conform in the same way

or have subtle variations in this process. An inability to adapt

also could be a determinant of immune-mediated disease.

Elegant population genetics studies have revealed traits, confer-

ring protection from infectious disease and selected for

throughout evolution, but in our modern environmental context

being associated with an increased risk of immune-mediated

diseases (Quach and Quintana-Murci, 2017; Brinkworth and

Barreiro, 2014). Additional examples of the importance of im-

mune adaptation to environmental inputs come from children

with rare, monogenic disorders presenting with life-threatening

primary infections (Alcaı̈s et al., 2010) that in some cases

improve with age (von Bernuth et al., 2008; Ku et al., 2007).

This reduced risk of severe disease with age could be a result

of immune adaptation to environmental influences conferring

added robustness to the system.

This study has several weaknesses. First, the direct fix and

freeze strategy for preserving blood samples for mass cytome-

try analyses was unfortunately not compatible with any of

several tested clones targeting either ab T cell receptors

(TCRs) or gd TCRs on T cells, preventing us from distinguishing

these subsets of T cells. gdT cells have been reported to be

abundant and important for providing protection to newborn

children (Gibbons et al., 2009). Similarly, this protocol also pre-

vented us from reliably detecting regulatory T cells, because the

FoxP3 transcription factor could not be detected in fixed/frozen

cells. Recent results indicate that the developing immune sys-

tem in prenatal life is fully functional, but actively suppressed

(Elahi et al., 2013; Zhang et al., 2017) and that regulatory

T cells are important mediators of this suppression (McGovern

et al., 2017; Mold et al., 2008). Because most of the conclusions

presented stem from global signatures across measurements,

they are robust to these technical limitations in detecting indi-

vidual cell populations.
1290 Cell 174, 1277–1292, August 23, 2018
All in all, we have reported on a longitudinal, systems-level anal-

ysis of the immune systems in newborn children that provide new

insights into the dynamics of immunecells andproteins early in life

and illustrate the reactive nature of human immune systems,

particularly in response to the myriad of microbial exposures at

birth and early thereafter. These findings have implications for

researchers striving to understand the unique state of immune

systems in newborn children, their susceptibility to infectious dis-

eases (Bhutta and Black, 2013), and how to protect such children

by developing better vaccines tailored to newborn immune

systems (Amenyogbe et al., 2015). These findings also have impli-

cations for our general understanding of human immune system

variation, early-life imprinting by environmental exposures, and

the development of immune-mediated diseases later in life.
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CD57 (HCD57) – Purified Biolegend Cat# 322302; RRID:AB_535988

CD19 (HJIB19) – 142Nd Fluidigm Cat# 3142001B; RRID:AB_2651155

CD5 (UCHT2) – Purified Biolegend Cat# 300602; RRID:AB_314088

CD16 (3G8) – Purified Biolegend Cat# 302002; RRID:AB_314202

CD4 (RPA-T4) – 145Nd Fluidigm Cat# 3145001B; RRID:AB_2661789

CD8a (SK1) – Purified Biolegend Cat# 344702; RRID:AB_1877104

CD11c (Bu15) – 147Sm Fluidigm Cat# 3147008B; RRID:AB_2687850

CD31 (WM59) – Purified Biolegend Cat# 303102; RRID:AB_314328

CD193/CCR3 (5E8) – Purified Biolegend Cat# 310702; RRID:AB_345394

CD64 (10.1) – Purified Biolegend Cat# 305002; RRID:AB_314486

CD123 (6H6) – Purified Biolegend Cat# 306002; RRID:AB_314576

CD21 (BL13) – 152Sm Fluidigm Cat# 3152010B

CD13 (WM15) – Purified Biolegend Cat# 301702; RRID:AB_314178

CD3e (UCHT1) – 154Sm Fluidigm Cat# 3154003B; RRID:AB_2687853

CD7 (CD7-6B7) – Purified Biolegend Cat# 343102; RRID:AB_1659214

NKG2C (134591) – Purified R&D Cat# MAB138; RRID:AB_2132982

CD9 (SN4 C3-3A2) – Purified eBioscience Cat# 14-0098-82; RRID:AB_657777

CD45RB (MEM-55) – Purified Biolegend Cat# 310202; RRID:AB_314805

CD22 (HIB22) – Purified Biolegend Cat# 302502; RRID:AB_2074593

CD14 (M5E2) – Purified Biolegend Cat# 301802; RRID:AB_314184

CD161 (HP-3G10) – Purified Biolegend Cat# 339902; RRID:AB_2661837

CD29 (TS2/16) – Purified Biolegend Cat# 303002; RRID:AB_314318

HLA-DR (L243) – Purified Biolegend Cat# 307602; RRID:AB_314680

CD44 (BJ18) – Purified Biolegend Cat# 338802; RRID:AB_1501199

CD127 (A019D5) – 165Ho Fluidigm Cat# 3166007B; RRID:AB_2661803

CD24 (ML5) – Purified Biolegend Cat# 311102; RRID:AB_314851

CD27 (L128) – 167Er Fluidigm Cat# 3167006B

CD38 (HIT2) – Purified Biolegend Cat# 303502; RRID:AB_314354

CD45RA (HI100) – 169Tm Fluidigm Cat# 3169008B

CD20 (2H7) – Purified Biolegend Cat# 302302; RRID:AB_314250

CD49d (9F10) – Purified Biolegend Cat# 304302; RRID:AB_314428

IgD (IA6-2) – Purified Biolegend Cat# 348235; RRID:AB_2563775

CD56 (NCAM16.2) – Purified BD Cat# 559043; RRID:AB_397180

CD185/CXCR5 (51505) – Purified R&D Cat# MAB190; RRID:2292654

CD244/2B4 (C1.7) – Purified Biolegend Cat# 329502; RRID:1279194

CD39 (A1) – Purified Biolegend Cat# 328202; RRID: 940438

CD11B (Mac-1) – 209Bi Fluidigm Cat# 3209003B; RRID:AB_2687654

Biological Samples

Peripheral blood samples from newborns and parents Karolinska University Hospital N/A

Fecal samples from newborn children Karolinska University Hospital N/A

Chemicals, Peptides, and Recombinant Proteins

1X PBS Rockland Cat# MB-008

EDTA Rockland Cat# MB-014

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Na-Azide Sigma-Aldrich Cat# 71289

Bovine Serum Albumin Sigma-Aldrich Cat# A3059

Paraformaldehyde Polysciences Cat# 00380-1

Intercalator-Ir Fluidigm Cat# 201192B

EQ Four Element Calibration Beads Fluidigm Cat# 201078

Maxpar X8 Multimetal labeling kit Fluidigm Cat# 201300

20-Plex Pd Barcoding Kit Fluidigm Cat# 201060

Metal isotopes as chloride salts Fluidigm N/A

RPMI 1640 medium Sigma-Aldrich Cat# R848

Dimethyl Sulfoxide Sigma-Aldrich Cat# D8418

Metal isotopes as chloride salts Trace Sciences International N/A

Protein Stabilizer PBS Candor Bioscience GmbH Cat# 131125

Critical Commercial Assays

SmartTube Proteomic Stabilizer Kit Fisher Scientific Cat# NC0618275

RNeasy Micro Kit QIAGEN Cat# 74004

Agencourt Ampure XP beads Beckman Coulter Cat# A63880

Nextera XT Sample Preparation Kit Illumina Cat# FC-131-1024

MO BIO PowerFecal Kit MO BIO Laboratories Cat# 12830-50

ProSeek INF I panel Olink AB INF I

ProSeek CVD II panel Olink AB CVD II

ProSeek CVD III panel Olink AB CVD III

Vacutainer CPT Tube BD Cat# 362753

Test tube with 35 mm nylon mesh Corning Cat# 352235

Whole Blood Cell Stabilizer Kit Cytodelics AB Cat# WBCS001

Deposited Data

FCS files, Mass cytometry This paper http://flowrepository.org/id/FR-FCM-ZYKQ

Protein expression data This paper Mendeley data: https://doi.org/10.17632/

ynhdrcxtcc.1

16S rRNA data This paper Mendeley data: https://doi.org/10.17632/

ynhdrcxtcc.1

Oligonucleotides

Forward primer rRNA sequencing:

50-TCGTCGGCAGCGTCAGATGTGTATAA

GAGACAGCCTACGGGNGGCWGCAG-30

This paper N/A

Reverse primer rRNA sequencing:

50-GTCTCGTGGGCTCGGAGATGTGTATAA

GAGACAGGACTACHVGGGTATCTAATCC-30

This paper N/A

Software and Algorithms

R 3.3.1 R Core Team, 2016 https://www.r-project.org/

Mass Cytometry Normalizer Finck et al., 2013 https://github.com/nolanlab/bead-normalization/

releases

Mass Cytometry Debarcoder Zunder et al., 2015 https://github.com/nolanlab/single-cell-debarcoder

sva 3.18.0 N/A http://bioconductor.org/packages/release/bioc/

html/sva.html

robCompositions 2.0.5 Templ et al., 2011 https://cran.r-project.org/web/packages/

robCompositions/index.html

kohonen 3.0.2 Wehrens and Buydens, 2007 https://cran.r-project.org/web/packages/kohonen

/index.html

vegan 2.4-6 N/A https://cran.r-project.org/web/packages/vegan/

index.html

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

cutadapt http://cutadapt.readthedocs.io/en/stable/index.html

ACCENSE 0.4.3 Shekhar and Brodin, 2013 http://www.cellaccense.com/

Ayasdi platform Lum et al., 2013 https://www.ayasdi.com/

Usearch https://www.drive5.com/usearch/

pplacer https://github.com/matsen/pplacer

CyTOF software (v. 6.0.626) https://www.fluidigm.com/

piano https://bioconductor.org/packages/release/bioc/

html/piano.html
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Petter

Brodin (petter.brodin@ki.se)

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Infant and Parental Samples
The study was performed in accordance with the declaration of Helsinki and the study protocol was approved by the regional ethical

board in Stockholm, Sweden (DNR: 2009/2052 – 31/3 & 2014/921-32). After obtaining informed consent from parents, blood samples

of newborns and parents were collected at the Karolinska University Hospital, Huddinge. Samples from 3 healthy adult controls,

100 children, 58 mothers, and 52 fathers were collected for the study. 12 blood samples were collected from the healthy adult

controls, 285 samples from the children, and 156 samples from parents. Of the children, 49 were male and 51 were female. 51 chil-

dren were born with cesarean section and 49 through vaginal birth, 50 children were delivered preterm (< 30weeks gestational age at

birth) and 50 were delivered at term (> = 37 weeks gestational age at birth). Gestational age at birth varied from 170 to 209 days in the

preterm group and from 259 to 293 in the term group. Birth weight ranged from 458 to 1623 g in the preterm births and from 2838 to

4655 g in the term births. The mothers had a median age of 32 (range 20-43) and the fathers a median age of 35 (range 21-52). The

healthy adult controls were of ages 26, 28, and 36.

METHOD DETAILS

Sample Collection and storage
From children, about 100 ml whole blood was collected for mass cytometry analysis and mixed with either SmartTube proteomic sta-

bilizer at a ratio of 1:1.4, or CytodelicsWhole BloodCell Stabilizer at a ratio of 1:1, incubated in room temperature for�10minutes and

transferred to a �80�C freezer for long-term storage awaiting analysis. For mothers and fathers as well as cord blood samples,

approximately 3ml of peripheral blood was collected. Plasma samples were obtained by centrifugation of blood samples at

2000 g and collection of supernatant.

Fecal samples were collected in plastic containers and stored at �80�C until use.

PBMCs were isolated using density gradient-based separation. 3-500 ml of blood was put in a BD Vacutainer CPT tube and centri-

fuged at 1600 g for 15 minutes followed by collection of buffy coat. Cells were frozen in freezing medium containing 50% RPMI, 30%

FBS and 20% DMSO.

Thawing of stabilized Mass Cytometry Samples
Whole blood samples preserved in SmartTube solution were kept on ice for 15 minutes, followed by thawing in a water bath set to

20�C. Red blood cells were lysed by addition of SmartTube Lysis buffer #1 and incubated at 20�C for 10 minutes. The white blood

cells were washed twice with CyFACS (1% BSA, 0.5%Na-Azide and 0.5M EDTA in PBS), filtered through a 35mmmesh and counted

using a Bio-Rad TC20 cell counter.

Whole blood samples preserved in Cytodelics Whole Blood Cell Stabilizer were thawed at 20�C. Cytodelics Fix/Lyse buffer was

added at a blood:buffer concentration of 1:10 and samples were incubated at 20�C for 5 minutes. Samples were then diluted 1:4

with Cytodelics Wash buffer #1 and left to lyse for 15 minutes. Cells were then washed twice with Cytodelics Wash buffer #2, filtered

through a 35mm mesh and counted using a Bio-Rad TC20 cell counter.

Antibody Labeling
Purified monoclonal antibodies indicated in the Key Resource Table were either purchased pre-conjugated from Fluidigm or

purchased in purified formulation and conjugated using the MAXPAR X8 polymer conjugation kit (Fluidigm Inc), according to the
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manufacturer’s protocol. Antibody concentration before and after conjugation was measured by NanoDrop 2000 spectrometer

(Thermo Fischer Scientific, Waltham, MA) at 280nm and antibodies diluted 1:1 in Protein Stabilizer PBS (Candor Bioscience

GmbH, Wangen Germany) prior to use.

Mass Cytometry Barcoding and Staining
A maximum of 2x106 cells per sample were barcoded using six combinations of palladium isotopes (102Pd, 104Pd, 105Pd, 106Pd,
108Pd, 110Pd) with the 20-Plex Pd barcoding kit (Fluidigm). Cells were fixed for 10 minutes in 1mL of Fix I Buffer at room temperature,

followed by two washes in 1 mL of Perm Buffer. Barcodes were resuspended in 100ml Perm Buffer, transferred to each sample and

incubated for 30 minutes at room temperatures. All samples were then washed twice with CyFACS and then pooled. Cells were

suspended in 150ml antibody cocktail per 107 cells and incubated for 30 minutes at 4�C. Antibodies used are listed in the Key

Resources Table. After staining, cells were washed twice with CyFACS followed by overnight incubation in 4% formaldehyde diluted

in PBS at 4�C.

Mass Cytometry sample acquisition
Iridium-labeled DNA-intercalator was added to cells in 4% formaldehyde for a final concentration of 0.125 mM and incubated for

20 minutes at room temperature. Cells were washed once in CyFACS, once in PBS and twice in milliQ H2O filtered through a

35mm nylon mesh and counted. Cells were diluted in milliQ H2O containing 10% EQ Four Element Calibration Beads to a concentra-

tion of 0.53 106 cells/ml. Samples were acquired on one of two CyTOF2mass cytometers, using noise reduction, event length limits

of 10-150 pushes and a sigma value of 3. Cells were acquired at a flow rate of 0.045ml/min.

ProSeek data collection
Plasma protein data was generated using the proximity extension assay (ProSeek, Olink AB, Uppsala). Three panels of 92 proteins

each were used to detect a range of biomarkers (Table S2). The data was generated in three batches of 88, 98, and 90 samples

respectively, for a total of 276 samples. The method has been described previously (Assarsson et al., 2014). Briefly, paired oligonu-

cleotide-coupled antibodies with overlapping sequences are allowed to bind in to proteins in the sample. When paired antibodies are

brought in proximity to one another through binding to their target, their oligonucleotide sequences overlap to form a PCR target

which can be quantified with real-time PCR.

RNA preparation and sequencing
Frozen PBMCs were thawed and live propidium iodide-negative cells were sorted using a BD Influx Cell Sorter (200mm nozzle,

3.1PSI, 6.05 kHz) in 1.0 drop purity mode. RNA was isolated using the RNeasy Micro Kit. Full-length cDNA synthesis and amplifica-

tion from the polyA+ extracted RNAwas carried out as in Picelli et al. (2014). After amplification, dsDNAwas purified using Ampure XP

beads and DNA tagmentation and amplification of adaptor-ligated fragments (dual-indexed) was then performed with Illumina

Nextera XT DNA sample preparation kit. Samples were equimolarly mixed in two pools and sequenced in two HiSeq2500 lanes

(High Output mode v4, PE 2x125bp) at Science for Life Laboratory, Stockholm, Sweden.

DNA extraction and 16S rRNA sequencing
Fecal samples were frozen in sterile tubes without additives and DNA extraction was done using the MO BIO PowerFecal DNA isola-

tion kit (now available as QIAamp PowerFecal DNA Kit) following the manufacturer’s protocol. DNA was eluted in milliQ H2O and

stored at �80�C awaiting analysis. Prior to amplification, samples were thawed and normalized, and a total of 50 ng were used to

amplify the V3-V4 region of the 16S rRNA gene using primer pair 341F/805R. The initial amplification was carried out for 20 cycles

with the forward primer construct:

50-TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCCTACGGGNGGCWGCAG-30,
and the reverse primer construct

50-GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGACTACHVGGGTATCTAATCC-30.

After cleaning, a 5 mL aliquot of each of the 2-step samples was submitted to an Indexing reaction using the Nextera XT Index Kits

v2 in a 13 cycle PCR. Purification of PCR products was carried out using Agencourt Ampure XP Beads on a KingFisher Flex System.

Samples were then pooled to equimolar amounts and sequenced in a MiSeq instrument.

QUANTIFICATION AND STATISTICAL ANALYSIS

Mass Cytometry Preprocessing and Gating
All FCS-files were exported as non-randomized without any additional preprocessing from the CyTOF software (version 6.0.626).

Files were normalized using our own in-house implementation of normalization software described previously (Finck et al., 2013).

Each file was debarcoded using the MATLAB version of the single-cell debarcoder (Zunder et al., 2015). For visualization, each

data point X was randomized by sampling from a normal distribution with a mean of X and a standard deviation of 0.3. The data
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was transformed by dividing each value by 5 and applying the hyperbolic sine function (arcsin h (X/5)). Each file was gated on

according to the strategy shown in Table S4. For each file, cell frequencies of each population were calculated as a percentage

of all DNA-positive events.

Aitchison Distances using Immune Cell Frequencies
Aitchison distances between gated immune cell frequencies were calculated using the aDist function of the R package

robCompositions. Classic multidimensional scaling coordinates were calculated using the cmdscale function from the stats-

package. PERMANOVA statistical test between term and preterm births was performed using the adonis function from the

vegan-package. Statistical test for comparison of inter-individual distances was performed using a Student’s t test.

Correlation of Cord Blood and Week 1 Measurements
For this analysis, plasma proteins were selected for immunity-related proteins based on GO-terms. Pearson correlations for gated

immune cell frequencies (n = 48) and plasma protein concentrations (n = 44) in cord and postnatal blood from the same child were

calculated (paired correlations). These were compared to Pearson correlations between an equal number of randomly paired cord

and postnatal blood samples (random correlations). Cord blood was considered to be predictive of postnatal blood if the confidence

intervals of the paired correlations and the random correlations were non-overlapping.

bhSNE of Mass Cytometry Data
Manualgatingwasused toextractpopulations tobe included in thebhSNE run.Samplesweremerged intoasingledatasetandaZ-score

transformation was applied in order to give equal weight to all markers. The ACCENSE implementation of Barnes-Hut SNE was used

(Shekhar and Brodin, 2013), with a perplexity of 30 and removal of outliers. The markers used for each population is listed in Table S3.

Jensen-Shannon Distances on bhSNE Distributions
The Jensen-Shannon distance between two two-dimensional-distributions of bhSNE coordinates was calculated using the bhSNE

maps generated as described above. The calculation of Jensen-Shannon distances was performed as previously described by Amir

et al., 2013. Briefly, two-dimensional kernel density estimation distributions (two-dimensional-KDE) are calculated from the bhSNE

coordinates using the kde2d function from the MASS package with n = 28. The Jensen-Shannon distance between two two-dimen-

sional-KDEs is defined as the square root of the Jensen-Shannon divergence (JSD) between these distributions. The JSD between

two distributions P and Q are defined as:

JSDðP k QÞ= 1

2
KLðP k MÞ+ 1

2
KLðQ k MÞ
where
M=
1

2
ðP+QÞ
and KL is the Kullback-Leibler divergence defined as:
KLðP k QÞ=
X

i

X

j

PðijÞlog PðijÞ
QðijÞ

Analysis of variance in Mass Cytometry Data
Cord blood samples were excluded from the variance analysis to remove any variance due to differences between cord and periph-

eral blood. Variance analysis was only performed using sample series containing all time points to ensure that inter-sample variance

was based on at least three samples. For each group of adults (n = 3), preterm (n = 29) and term children (n = 15), and for each gated

subpopulation, a linear model was fittedwith the subpopulation frequency as the response variable and subject ID and sampling time

in days after birth as predictors. An ANOVA table was extracted and the relative contribution of Subject ID and sampling time to the

total sum of squares was calculated for each subpopulation in each group. The coefficient of variation defined as

Cv =
s

m

was calculated separately for each group and each gated subpo
pulation.

Clustering of mass cytometry data by self-organizing maps
Clustering was performed on each cell type separately, pooling all samples (n = 91) from 28 children. For each cell type, each dataset

was down-sampled to 10 000 cells, files belonging to the same child were pooled and the data was Z-score transformed to account

for batch effects between series. All files were pooled and the maximum intensity for each channel was set to the 99th percentile to
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account for outliers. Self-organized map (SOM)-clustering using the som function from the kohonen package and a hexagonal SOM

grid of 20x20was performed usingmarkers specific for each cell type (Table S3) and rlen = 100. Subclustering on the SOMclusters to

10 subclusters was performed and clusters representing less than 1% of all cells were removed.

ProSeek plasma protein data preprocessing
Cq-values for each protein are recalculated to a relative log2-scale with arbitrary units. The data is normalized to minimize intra- and

inter-assay variation, and the data from the three panels and the three batches were merged into one dataset. Proteins that were

detected in less than 20% of all samples were discarded. Any missing values were set to the lowest detectable value for that protein.

A batch correction was performed using the ComBat algorithm as provided in the sva R package using pre-term/term status and

sampling time (week) as covariates.

GO-term classification of immune system plasma proteins
Proteins with a known function in the immune system were identified from the total list of proteins (Table S2) by selection of proteins

associated with at least one of the following GO-terms: ‘immune response’ (GO:0006955), ‘inflammatory response’ (GO:0006954),

‘cytokine activity’ (GO:0005125), ‘chemokine activity’ (GO:0008009), and ‘defense response’ (GO:0006952). This subgroup involved

124 out of 251 proteins.

Topological Data Analysis
The parameter landscape model in Figure 5 was generated by performing Topological Data Analysis (TDA) integrating 250 plasma

protein concentrations and 48 immune cell frequency measurements, in 202 blood samples from newborn children. Each measure-

ment was scaled to unit variance. The analysis was performed using Ayasdi software platform (Ayasdi Inc., Menlo Park CA). Nodes in

the network represent sets of newborn blood samples and edges connect nodes with sharing samples. Nodes are colored by the

average value of their samples for the variables listed in the figure legends. TDA was used to reconstruct the systems-level changes

in the newborn immune system and allow analyses of changes in relation to metadata parameters. Two types of parameters are

needed in TDA; I) a notion of similarity, measuring a distance between samples in the dataset and II) lenses, which are real-valued

functions applied to the data points. Lenses are used to create overlapping bins in the dataset. Overlapping families of intervals

are used to create overlapping bins. Metrics are used with lenses to construct the Ayasdi output network. There are two parameters

used to define bins in the data: I) resolution determining the number of bins, and II) gain, determining the degree of overlap of data

intervals. Once bins are constructed, a clustering step is performed on each bin using single linkage clustering with a fixed heuristic

for the choice of the scale parameter (Singh et al., 2007).This gives a family of clusters within the data, which may overlap, and a

network with one node for each such cluster, a connection between two nodes sharing at least one sample. We used two types

of lenses. In making a TDA graph, the points in the dataset are clustered within bins, defined by setting the resolution of the analysis.

To determine how two groups of points defined in a TDA graph differ, a non-parametric statistical test (Kolmogorov-Smirnov) in com-

bination with the p value (t test) was used to identify parameters with a p < 0.05 for either one of the tests. Cells and proteins that were

expressed at significantly different levels are reported in Table S1.

RNaseq data analysis
We estimated counts from Kallisto (Bray et al., 2016) and performed differential expression analysis using DEseq2 (Love et al., 2014).

To calculate enriched gene ontology terms associated with these differentially regulated genes we used the PIANOpackage (Väremo

and Nielsen, 2013). These calculations were performed separately to compare preterm and term children in week 12 and to compare

week 12 versus week 1 samples from all children analyzed (n = 8).

16S rRNA sequencing analysis
TheCutadapt packagewas used to remove reads not carrying primers, trim awayprimer sequences and baseswith Phred score < 15.

Forward and reverse reads were merged using Usearch. Non-overlapping reads, merged sequences < 380 bp or > 520 bp, and se-

quenceswith > 3 expected errors over the full lengthwere removed. Sequenceswere de-replicated and the unoise tool was usedwith

a minimal cluster size set to 2 to error-correct the sequences. Each of the merged sequences were mapped back to the corrected

sequences for quantification, requiring 99% identity over the full length to assign taxonomy to the corrected sequences. To assign

taxonomical class, corrected sequencesweremapped to theSILVAdatabaseand the resultwasparsedat an IDcutoff at 95%.Unifrac

distances were calculated by mapping the sequences to SILVA using pplacer, and calculating distances using Guppy.

DATA AND SOFTWARE AVAILABILITY

Additional analyses and raw data are available: brodinlab.com/newborns. Also, all mass cytometry data are available at https://

flowrepository.org/id/FR-FCM-ZYKQ (Exp ID: FR-FCM-ZYKQ), plasma protein and 16S rRNA data are available at Mendeley

data: https://doi.org/10.17632/ynhdrcxtcc.1.
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Supplemental Figures

Figure S1. Cord Blood Immune Parameters in Preterm and Term Children, Related to Figure 1

(A) Principle component analysis of plasma protein concentrations in cord blood of term (blue) and preterm (pink) children.

(B) Neutrophil levels as a fraction of all white blood cells in cord blood in relation to gestational age at birth. A linear regression curve is fit to the data (blue line)

together with a confidence interval (light blue shade).



Figure S2. Over Time Stability of Immune Parameters in Healthy Adults, Related to Figure 2

(A and B) Pearson’s correlation coefficients of immune cell frequencies (A) and plasma protein concentrations (B) between two peripheral blood samples taken

3 months apart in a cohort of 100 healthy individuals. Included is also a nonsense control correlation between random samples (black). Cell populations (A) or

plasma protein concentrations (B) that are significantly correlated compared to control samples are indicated in blue.



(legend on next page)



Figure S3. Global Immune System Development in Relation to Metadata, Related to Figure 3

(A) TDA network landscape from Figure 3A showing the number of samples included in each node of the network.

(B) The same network as in (A) and colored by the proportion of samples in the node taken from children delivered by cesarean section or vaginal delivery

respectively.

(C) PCA analysis of plasma protein showing PC1 (x axis) and PC2 (y axis) and individual samples colored by sex.

(D) MDS analysis of cell composition showing component 1 (x axis) and 2 (y axis) and individual samples colored by sex.

(E) PCA analysis of plasma protein showing PC1 (x axis) and PC2 (y axis) and individual samples colored by season of sampling.

(F) MDS analysis of cell composition showing component 1 (x axis) and 2 (y axis) and individual samples colored by season of sampling.



(legend on next page)



Figure S4. Immune Cell Population Variance Early in Life, Related to Figure 4

(A and B) The relative contribution to the total variance of inter- and intra-individual variance for 24 immune cell populations in newborn children (A) and healthy

adults (B).

(C–G) Composition of immune cell clusters analyzed separately using self-organizing map clustering, within CD4+ T cells (C), CD8+ T cells (D), NK-cells (E),

neutrophils (F), and monocytes (G).

(H) The Monocyte cluster #8 is highlighted in a bhSNE map within total CD14+ monocytes and the relative expression of CD14, HLA-DR and CD31 is highlighted.

(I and J) The relative frequency of cluster M #8 over time in children (I), and (J) parents.



(legend on next page)



Figure S5. Differentially Regulated Transcriptional Programs between Weeks 1 and 12 after Birth, Related to Figure 6

Gene ontology terms in week 12 versus week 1 from RNaseq-data between. GO-terms for genes significantly different week 12 versus week 1 are shown and

divided by gene set overall direction of differential regulation; up only, down only, mixed, mostly up, mixed mostly down and unidirectional.
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